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Abstract-This paper presents an analysis of the heat conduction in a translationally and rotationally 
moving cylinder under the influence of a system of concentrated and distributed heat sources over the 
cylindrical surface. Steady, transient and unsteady states are considered. Physically, this problem 
represents the machining of a cylinder by a set of tools. Two simpler cases are also investigated: A system 

of moving ring sources and a moving generatrix-band source. 

NOMENCLATURE r, 0, x, cylindrical coordinates; 

%,%,h”, constants defined by (25); r0, radius of the cylinder; 
function defined by (24); 
specific heat; 
Green’s function for transient state; 
Green’s function or fundamental Green’s 
function; 
convective heat-transfer coefficient; 
thermal conductivity; 
half-width of the cutting tool surface; 
distance between centers of tools; 
number of tools; 
rate of heat generation; 
rate of heat generation per unit length; 
rate of heat generation per unit area; 

4 time; 

T, temperature; 

u, axial velocity; 
U,.V, functions defined by (46). 

Greek symbols 

a, thermal diffusivity; 
6, Dirac delta function; 
v, angular half-width of the cutting tool surface; 

P* density; 

0, angular velocity; 

0.t = J(wnla); 
<r, <z, functions defined by (48). 

INTRODUCTION 

THE THEORY of moving heat sources is of great importance in manufacturing and metallurgical processes and 
has been under intensive study for almost seven decades [l-S]. Most of the analyses are for systems with a 
concentrated source moving along a straight coordinate. 

Jaeger [6] was probably the first to investigate the heat conduction in a circular cylinder around whose surface 
a line source moves with constant angular velocity. He applied Laplace transform to the heat equation and 
solved the transformed equation by the classical method [7] with the aid of convolution theorem. According 
to Jaeger, the advantage of his method is to separate the more interesting steady or periodic solution. Most 
recently, DesRuisseaux and Zerkle [8] applied Jaeger’s method to the study of an infinite band source with 
convective heat transfer at the cylinder surface. 

The usual method for the solution of a moving heat source problem is first to find the instantaneous source, 
then to change the stationary coordinate system to a moving one and to integrate with respect to time. This 
results in the unsteady solution if the upper limit of integration is set to any value of time and in the steady 
solution if the time limit is extended to infinity [2]. This method, however, usually yields the steady solutions in 
double and triple series for two and three dimensional problems. It was probably due to this drawback that 
Jaeger recommended the use of the Laplace transform-convolution method. 

tNow with General Atomic Company, San Diego, California 92121, U.S.A. 
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The present study is concerned with the heat conduction in a translationally and rotationally moving cylinder 
under the influence of a set of concentrated and distributed heat sources. Physically. this problem represents the 
machining of a cylinder by a set of grinders or cutters. Two simpler cases are also considered: One for moving 

ring sources and the other for a line source moving over the circumference of a cylinder. 

FUNDAMENTAL EQUATIONS 

Consider the machining of a long circular cylinder by a set of tools as schematically shown in Fig. 1. The 
cylinder rotates counterclockwise at a constant angular velocity o and moves axially at a constant velocity u in 

FIG. 1. Geometry of the problem. 

the positive x direction. Due to the removal of material from the cylinder surface, heat is generated between 
the cylinder and the tools over the finite areas: 

- v < f1-c v, (pL-1) < (pL+x) < (pL+l) 

where p = 0, 1,2,. , N - 1 with N being the number of tools and other quantities are defined in the Nomenclature. 

If, as usual, thermo-physical properties are ,assumed constant, the differential equation governing the heat 
conduction in unsteady state may be written in the form 

-V’T=O, 

where V2 is the Laplacian operator 

V2 EL2 ,? I l s2 ; ?’ 
( > rar Pr r2 d02 (7x2’ 

for 0 < r < r,,, 0 < 0 < 271,1x/ < co. The boundary conditions on T may 

T = F(r, 8, x) for 0 < r < ro, 0 < 0 < 27r, 

k;+hT=f(B,x) for r = rO, 0 < e < 2k, 

be written as follows: 

1x1 < a, t = 0; 

1x1 < a, t > 0; 

(2) 

(3) 

(4) 

T=O for 0 < r < ro, O<fl<2K, IxI=co, t>o; (5) 

kg = Q”(ro, 0, x) for r-+ro. -v<U<v, (pL-1) < (pL+x) < (pL+l), t > 0. (6) 

If heat is generated in N points instead of N finite areas, condition (6) is replaced by 
. 

Q kg=- 
47rR2 

for R -+ 0, 0 = 0, x = pL, t > 0 where R2 = r2 + rt--2rrocos fl+x’. The known functions f, F, Q, and Q” are 
assumed as square integrable with respect to space variables. This condition is usually satisfied in practical 
problems. 
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To find the solution of (1) satisfying conditions (3) through (6), it is convenient to find first the corresponding 

Green’s function which is to satisfy the following equations: 

(7)* 

forO<r<ro,0~O~2n,Ixl<co,t>0; 

kF+hG=o for r = ro, 0<0,<27[, IxI<co, t>o (8) 

G=O for 0 < r < ro, o<e<27[, IxI<co, t=O (9) 

G=O for O<r<r,, 0<0<2?7, JxI=co, t>o. (10) 

It is to be noted that G(r, 8, x, tlr’, Q’, x’) is a continuous point source instead of an instantaneous point source, 

G(r, 0, x, tlr’, fl’,x’, t’). 

When the Green’s function G(r, 0,x, tlr’, fl’,x’) is known, the solution for the temperature caused by N 

concentrated sources at (ro, 0, pL) is given by 

T(r,L),~,t)=Q~~~G(r,O,x,tJr,,0,pL) 
PCp=o 

f(o’, x’)” G(r, 0, x, tlro, o’, x’)r,dB’dx 
Zr’ 

F(r’, f?‘, x’)G(r, 0, x, tlr’. 0’, x’)r’dr’dwdx (11) 

and the temperature caused by N distributed sources at (ro, o’, pL + x’) is given by 

Q”G(r, 0, x, tjro, fl’, x’)d&dx’ 

tin m 
-- h JJ _ _ n m f(O’, x’) $ G(r, 0, x, tjro, 0’, x’)rO d0’dx’ 

10 IT m + sss F(r’, O’, x’)G(r, 0. x, tJr’, O’, x’)r’dr’dB’dx’. 
0 -n -cc 

(12) 

In the above formulation, we have assumed that the solid is moving while the sources are stationary. 
Alternatively, we may consider the solid as stationary while the sources are moving helically over the cylinder. 
Now if we let the centroids of sources be seated at (ro, 0, pL), we can then expect that, as time goes to infinity, 
steady state will be reached. In practice, such a steady-state solution is of more importance. For this reason 
and others which will be seen later, we shall first consider the steady problem. 

For steady state, the Green’s function G(r, 8, XII’, fl’, x’) is to satisfy the following equations 

k( ~30 2x) ar 
wE+uE -V’G = 16(r-r’)6(B-@‘)6(x-x’) (13) 

kg+hG=O for r=ro, 0<0<2n, IxI<cC (14) 

G=O for O<r<r,, 0 < 0 < 271, 1x1 = 03. (15) 

The temperature distributions for concentrated and distributed sources are given by equations in the same 
forms as (11) and (12) after the variable t is dropped. 

*For simplicity, &t-O) has been deleted in the right hand side of the equation. 
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HELICALLY MOVING SOURCES-STEADY STATE 

We seek the solution of (13) in the form 

G(r. 0, x11.‘. I)‘, x’) = f i Xnm(xi.x’. r’. o’, ~nm)Jn(&,,r)ein’ (16) 
n=--3; In=* 

where J, is the Bessel function of the first kind and order n. The expression (16) has already satisfied the finite 

condition at I’ = 0 and also satisfies condition (14) if A,,,, are the roots of 

&mJ#nmrO)+ t J&,,r,) = 0. (17) 

Multiplying both sides of (13) by rJ&, r) emi’@ dr d0, integrating over (0, rc,) and (-n,n), and using the 

orthogonality of J,,(&, r) and eins, we obtain 

X& - ” x;, - (A& + ial,2)X”, 
JdL r’) _ = ---------_d(x_x~)e-i~~ 

x 2naN,,, 

where N,, is the norm given by 

(18) 

(19) 

In view of (15) the boundary conditions on X,,, may be written as 

x,, = 0 for 1x1 = co. (20) 

Clearly, X,, is the one-dimensional fundamental Green’s function (i.e. Green’s function in an infinite region) 
with strength J,(L,, r’) e-‘““/(2naN,,) and can be constructed from its basic properties [9] or by introducing 

X,, = $nm e”(x-x’)/2z to (18) so that 

The solution for &, satisfying $,,( k m) = 0 is 

J.(d.,r’)exp[-(uz/4a2+~~,,+iw~)1’2~x-x’~]e_i~B. 
4”m(XIx’) = ~~-~ 

47caN,,[u2/4c(* +&&+ i~,2]“~ 

It follows that 

Xnm(xIx’) = 

J”(~~“~r’)exp[~(~-xf)-(~+i-+io:~’21x-x~l]e_i~~, 

47raN,,[u2/4a2 +A;,,, + i~;]i’~ 
(21) 

Substituting (21) into (16) we obtain 

G(r, 0, xlr’, o’, x’) = 
i&, J,(h,, r)J,&, r’) eince-“) 

J;I ,,,=I [(h/k)2+~~~--21r81J~(~,mro) 
1 

x --~-~-~exp[~(x-I.)-(~+i:.+iw:)ill,s--I.]. (22) 
[u2/4& +&+ iw:]“* 

After a little mathematical deduction (22) becomes 

G(r, 8, xlr’, O’, .x’) = 
exp~~(x~xf)l~l [S,.(r,rr)exp(_u,lx_x,,)+2 z B,,(r,r’)exp(-a.lx-x’l) 

27&a a0 n=l a,2+b.z 

x {aticos[n(&fI’)-h,lx-x’l]+b,sin[n(H-8’)-h,lx-x’l]} 
1 

(23) 
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where 

&,(r, r’) = 
Xm W,, r)J&,, r’) 

[(W2 + AL - n2/61Jn2L r0) 
(24) 

a0 = [agm+u2/4u2]1’2, bo = 0 

a, = ~{[(~~~+U’/40rL)‘fm:]“2 +(i~++2/4u2)}1’2 (25) 

b, = ~{[(ai+~‘/~‘)‘+o,‘]l~2_(~~+~2,~2)~l,2. 

If S = 0 and the heat produced between each grinder (or cutter) and the cylinder is assumed to concentrate 
in a point, then the steady temperature distribution in the cylinder is obtained 

X [a,cos(nB-b,lx--pLl)+b,sin(nB-b,jx-pLI)] 
i 

If the heat is generated uniformly from finite areas, the temperature distribution in steady state is 

T(r, 0, x) = g “il 

Y 

ss 

pL+l 

G(r, 0, xIro, O’, x’)dx’rodQ 
PCp=o --Y pL-1 

‘IlX-X~)-B.IX--x~I 
x ezz {%cos[~(~-8’)-b,lx-x’~]+b,sin[n(B-8’)-b,Jx-x’~]} dx’d0’ 1 

Performing the integration with respect to Q’, yields 

T(r,f?,x)=sN$’ cc v 1 
0 PO i m=l 

y F,(x, p) + 2 f EY $, $$$ F”(X, 8, p) 

“=I n ” ” I 

where 

s PL.+l II(x--x.)--LIo~x_-x~~ 

Fok PI = a0 e21 dx’ 
pL-I 

F,(x,e,p) = F~,(~,p)c~sne+F~.(x,~)sinne 

s 

PL+l II(X--x.)--L”(X--x.~ 

&(x, P) = e2a [a,cosb,(x-x’l-b,sinIx-x’[]dx’ 
pL-I 

s 

pL+J I! ,x-X’)-.“,X--X’, 

Fzn(x, P) = e*l [b,cosb,lx-x’l +a,sinlx-x’l]dx’. 
pL-l 

(26) 

(27) 

(28) 

(29) 

Due to the presence of Ix-x’l and three different zones (-m,pL-l), (PL-I,pL+I) and (pL+La), the 

integration with respect to x’ in (29) is quite complicated. By introducing Heavisides’ step function to each 

zone, we obtain 

F,(x, p) = _!!?_.- 
u 

“0-G 

-e 

HMT Vol. 18, No. 1 -H 
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cosb”H(-x+pL+l)-b” sinb”H(-x+pL+I) 

- sinb”H(-.u+pL+l)+b” cosb”H(-x+pL+Z) 

(32) 
where the function H(x) is defined as 

x for x>O 
H(x) = 

0 for x < 0. 
(33) 

The detailed derivation of the above equations can be found in [lo]. 

HELICALLY MOVING SOURCES-TRANSIENT AND UNSTEADY STATES 

The Green’s function for the unsteady problem, (7-10) may be written as 

G(r, (1, x, t(r’, o’, x’) = g(r, 0, x, t(r’, O’, x’) + G(r, 0, x(r’. (I’, x’) 

where G(r, 0, xlr’, fY, x’) is given by (23) and g(r, 0, x, tlr’, f?‘, x’) satisfies 

g = -G(r, 0, x/r’. 0’. x’) O<r<r,, O<fO<27z. jxI<co, t=O 

kZ+hg=o r= ro, 0 < n < 2n, 1x1 < Co, t>o 

g=o O<r<r,, 0 < 0 < 2n, 1x1 = m, t > 0. 

(34) 

(35) 

(36) 
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Clearly, (34) satisfies (7-10) and g(r, 0, x, tlr’, 8’, x’) can be readily recognized as the Green’s functions associated 

with the transient problem. In view of the initial condition in (36) and G(r, 8, xlr’, B’, x’) in (22) we seek the 
solution of (35) in the form 

g = f f A,,$,,(x, tlx’)J,(~,,r)e-inl’-(l~-+k’J:)lr (37) 
“=-cc m=l 

where 

Am = 
-l~m.Jn(i,,r’)e-i”e’ 

- (n/ro)2]J,2(~~mro) I 
l/2 

27rr~a[(h/k)2+~~m 

and An,,, are the roots of (17). Substituting (37) into (35) yields 

%nm a*,, ~2*,, o, 

,t+uY-aP= CX i7X2 

The boundary conditions on tj,,,, may be taken as 

*.!?I = 0, for 1x1 < 00, t>o 

$., = exp[~(x-x~)-(~+nlti,:)‘r’,x-xf,]. for 1x1 < 00, t =O. 

The solution of (39) satisfying (40) can be readily written down as 

$.,,, = jym exp[~(x’~-x’)-(~+~“~~+iw.i)l:‘lx”-x’,]G(I.r,x”,O)dx” 

where G(x, tlx”) is the Green’s function associated with (39)-(40) and is 

G(x, fix”) = 
1 

~ exp[ - (x-x”- ~t)~/(4at)]. 
2 JW) 

Substituting (42) into (41) and performing the integration yields 

IC/nm(~,fl~‘) = +e-(X-+-U#14a~[a: erfc (zi)+a% erfc (zz)] 

where erfc(z) is the complimentary error function of complex argument. zi and z2 are defined by 

( x-x’ 
z, = 2c(t+a”fib” 

> 
J(at) = 51fiq 

z2 = ( x-x’ 
- 2c(t + a, _t ib, 

> 
J(at) = l2 + iv 

51 = x--XI + a&t), 
2 J(at) 

(2 = -X-X-+a.&), 
2 Jbt) 

rl = h/(4 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

where a, and b, have been defined in (25) and the minus sign is used when n = negative. Substituting (38) and (43) 
into (37) gives the Green’s function for the transient state, 

g(r, 0, x, t(r’, W, x’) = 
m B,,(r r’)einl(J-I~)-11:;+im:)lr 

&&msl ;2 

[ 

l/Z [erferfc(zl) + e** erfc(z2)] e-(x-x’-u*)214~t (45) 

~+&+ico,2 1 
To reduce the complex functions in (4.5) to real functions, we separate the complex function e”erfc(z) into 

real and imaginary parts by means of the following relations: 

w(iz) = e”erfc(z) 
m 

w(z) = I 
s 

e-” dr = U(& q) + iV(<, q) 

(46) 

77 _,Z--t 

where z = 5 + iv and U(<, II) and V(& q) have been tabulated [ 111. From these relations, the following corrolaries 
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which are needed here can be obtained: 

44 = U(% 5) - iv& <) 

w(E) = U(y, 0 + iV(q, <) 

where i = < - its. Applying (46) and (46’) to (45) we obtain the Green’s function for the transient problem 

(46’) 

g(r, 8, x, t/r’, B’, x’) = 

x e-l~-Zf{ilcOs[n(e-~~)- w,~cx~] + i2 sin [rice-F) -o&t]} 1 (47) 

where 

il = &Jh 5d+ U(v, Ml + ~“[WL 51)+ WI, Ml 
52 = WJh 51) + U@L M + W’h, <I)+ VI, 5dl 

(48) 

and cl, c2 and r~ have been defined in (44). 
If each of the N point sources generates heat at the rate of Q, the temperature history in the transient 

state with F = f = 0 is obtained by substituting g in (47) for G into (11) and replacing x’ by pL and 8’ by zero. 

T(r, 8, x, t) = 12 Nil g(r,@,x, tlro, 0, pL) 
PC,=0 

+ e-lx-pL -ut)'/4at 

x e-“‘z* [ii cos(n0-0&t) + i2 sin(n&w&t)] 
1 

(49) 

Similarly, for N distributed sources each generating heat at the rate of Q” per unit area, the temperature 
history can be obtained from (12); the integration cannot be expressed in tabulated functions but it can be 
obtained numerically without difficulty. 

MOVING RING SOURCES 

If the rotational velocity w of the cylinder is very large in comparison with the translational velocity, u, the 
problem may be approximated as one of moving ring sources. Then the temperature will be independent of 
the angular position 0. The Green’s functions for steady, transient and unsteady states can be similarly obtained 
by the direct solution of the appropriate differential equations [lo], or by specializing the results of (23) and 
(45) to the present cases. Setting 6’ = o = 0 in (23) and (45), integrating with respect to 6’ from --71 to rr and 
dividing by 2~. we obtain the Green’s functions in steady and transient states, 

(50) 

g(r, x, W, x’) = zr’, g 

” (x-x’)+l’lr 
m l.~Jo(~,r)Jo(~,r’)e21 

I 

0 ml a~J,'(kr~)[#,+ VW1 

where a0 has been defined in (25) and 1, are the roots of (17) with n = 0. It is to be noted that (50) and (51) 
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represent the first series in (23) and (47), respectively, i.e. for n = 0. Thus, the series for n # 0 represent the 
correction terms for the tangential heat flow. 

If heat is generated at the rate of Q’ per unit length of the ring at (re, 0), the steady and transient temperature 
distributions in the cylinder due to a single ring can be readily written down by multiplying Q’/pc to the 
right hand side of (SO) and (51) and setting r’ = r. and x’ = 0. The steady solution has been reported in [5]. 

If there are N ring sources apart at a distance L, the temperature distributions in steady and transient states are 

:1x-pL)-a,lx-pL/ 
Q' N-1 m l.~Jo(A,r)e2a 

‘@“) = r,k Jo El a J (I r&)[12 +(h/k)‘J OOm. m 

L(x-pL) m 

T(r,x,t) = -& '$' e2a c 

GJ0(kr) 

OPO m=i a0J0(a,r0)[~1+(h/k)21 

If each of the ring sources has width of 21, the temperature distribution in steady state is 

T(r, x) = ~ Q” “2 F GJ0Rd 

2nr8k p=o m=l aoJo(~,ro)[iH+(h/k)2] 
2nro f 

pL+’ J&-x’)-,.lx-x.1 
e** dx’ 

pL-I 

(52) 

(53) 

(54) 

(55) 

where F. is given in (29). 

GENERATRIX LINE SOURCE 

Consider a generatric line source at (r’, 0’) rotating about the cylinder axis at a constant angular velocity, w. 
To find the Green’s functions for the transient and steady problems. we may specialize (23) and (47) to this case 
by setting u = 0 and x = 0, and integrating with respect to x over (-co, 00). The results are: 

G(r,Blr’,8’)=& f1 ~+Z”~~~.[~~cos~(8-8.)+w:sinn(B-8’)] 
m- Om "In 0" 

g(r,e,tlr',@)=-+- f ye- 
m &Jr, r') 

7Eroa m=l OIlI Ah"mt + 2"zl (n,4,+0:) 

(56) 

x (A~~ccos[n(e--V)-~.2~(t] +c~,Zsin[n(B--8’)-w,2ar]} . 1 (57) 

These results can also be obtained from the Green’s function associated with heat equation [lo]. However, 
G(r, Blr’, 0’) can be expressed in the form of a single series, were it determined directly from its governing 
equations (13) and (14) after 6(x--x’), 1x1 < co, and all derivatives with respect to x are deleted. We now write 

G(r, elr’, 0’) = 2 R,(rlr’;n)e’“’ (58) 
“=-CC 

Multiplying both sides of the differential equation by e -in8, integrating with respect to 8 over (-A, n) and making 
use of the orthogonality of eine, we can obtain 

Ri+LRb-- $+icoi R,=cd(r-r’). 
( > 

, 

r ar 

The solution of (59) satisfying the boundary condition 

kR;+hR, = 0 for r = r. (60) 

can be easily found as 

R&jr’) = - ul(r)u2(r') and h(r'Mr) 

p(r’)W(ai, ~2) -p(r')Wb ~2) 

(59) 

(61) 
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Fro. 2. Surface temperature due to single distributed heat source at (ro, 0,O) YS 
axial position for 0 = 0 and UJ = IOn rad/s. 

_ Fe-200 

---- Pe = 2.0 

FIG. 3. Temperature due to a single distributed heat source aJ (r,O,O) vs axial 
and radial positions for 0 = 0, Bi = 2.0 and w = 10s rad/s. 

for r < r’ and r > r’, respectively, with p(r’) = r’ and 

u1 = &(ji.o,r) 

u2 = ([h~(Ji.w.r,)t-kJi.cu,K~(Ji.w,ro)]I,(-\li.w,r) 

-[hl,,(,/i.w,ro)+k Ji.w,C(Ji.o,ro)]K,(:i.w,r)) (62) 

W(ul, ~2) = - f [&(.ji . w,rO) -t k,/i ton&/i. w,ro)] 

where 1, and K,, are the modified Bessel functions of the first and second kinds, respectively. Rewriting the 
exponential and Bessel functions in complex forms and putting r’ = ro, (58) becomes 
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l3c. 4. Surface temperature due to triple distributed heat sources at (rO, 0,O). 
(rO, O,O.l), and (ro, 0,0.2) vs axial positions for 0 = 0 and o = 10~ rad/s. 
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1 3 

Pe = 20.0 
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5 

FIG. 5. Temperature due to triple distributed heat sources at (r,,, O,O), (ro, 0, O,l), 
and (rO, 0,0.2) vs axial and radial positions for 0 = 0, Bi = 2.0 and w = 1Otr rad/s. 

where 
M1 = [ber;(w,r) + bei.2(w,r)]“2, M2 = [berL*(o,, ro) + b&(w, ro)] 

M3 = [ber&on\o) + bei&o, ro)] ‘I*, 
bei,(o, r) 

41 = tan-‘- 
ber,(w, r) (64) 

& = tan-’ 
bei:(w, r,,) bei&, rd 
berb(w, r,,) ’ 

cf+ = tan-’ 
ber.(w,ro) ’ 

and ber and bei stand for Bessel-real and Bessel-imaginary, respectively. If we replace 0’ by wt and multiply 
the right hand side of (63) by Q’/pc, we obtain the temperature distribution in periodic state due to a line source. 
If we replace 0 by ot + 0” and integrate with respect to f?” over (-u, u), we obtain the periodic solution for a band 
source which has been reported in [8]. 

RESULTS FOR STEADY STATE AND DISCUSSIONS 

Equations (26) and (28) were calculated for r,, = 0.5 ft, ct = O.l72ft*/h, 1 = O.O05r,,, v = 001 rad, and a wide 
range of values of angular velocity, w, Peclet number (Pe = 2r,,u/a) and Biot number (Bi = Zr,h/k). It was 
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found that in the practical range of machining processes, Pe = 2 -+ 20 and w = 0.1~ -+ 10~ rad/s, the first series 
of (26) and (28) yield good results everywhere in the cylinder except in the proximity of a source. In other 
words, the temperature dependence of 0 can be neglected and consequently the ring source approximation gives 
sufficiently accurate results for the practical range of machine operation. 

Some of the calculated results are shown in Figs. 22.5. In Fig. 2 are shown the temperature distributions 
along the generatrix (0 = 0,r = r,J due to a single distributed source at (r’ = ro, --L’ < 8’ < 0,x’ = 0), for 
Bi = 02, 2.0. Temperature.distributions along generatrices (H # 0, r = r,,) are almost the same as those shown 
in Fig. 2 except near x = 0, as mentioned earlier. Figure 3 shows the temperature distribution in the cylinder 

due to a single distributed source at (r’ = ro, -c < 8’ < o, x’ = 0) for 0 = 0, w = IOrr rad/s and various values 

of Pe and Bi. In Figs. 4 and 5 are shown the temperature distributions on the surface and in the interior of 
the cylinder, respectively, under the influence of triple distributed sources. 

From Figs. 2 and 4 it is seen that for large values of Bi (i.e. large rate of surface cooling), the variation 
of Pe (i.e. the variation of translational velocity) has little influence to the surface temperature, whereas the 
influence of Pe is quite large for small values of Bi. This discussion holds also to a lesser degree if we interchange 
Bi and Pe in the above statement. Figures 3 and 5 show that, for a given material with a given value of the 
convectance, the temperature in the cylinder can be higher than that on the surface at points away from the 
source or sources. The asymmetry of temperature curves in front of and behind the heat sources is more 

pronounced in the case of multiple sources than that of a single source. For small values of Pe or large values 
of Bi the maximum temperature occurs at the position of the middle source, whereas for large values of Pe or 
smaller values of Bi the maximum temperature takes place at the position of the right-hand source. 
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UN SYSTEME DE SOURCES THERMIQUES CONCENTREES OU DISTRIBUEES 
SUR UN CYLINDRE EN MOUVEMENT DE TRANSLATION ET DE ROTATION 

Resume-Ce mtmoire presente l’analyse de la conduction thermique dans un cylindre en mouvement 
de translation et de rotation, avec des sources de chaleur concentrees ou distribuees sur la surface. On 
considere les differents regimes: permanent, transitoire et variable. Physiquement, ce probleme represente 
I’usinage dun cylindre par un ensemble d’outils. Deux cas simples sont consider&: un systeme annulaire 

de source mobiles et une source mobile en forme de bande le long dune gtntratrice. 

EIN SYSTEM DISKRETER UND VERTEILTER WARMEQUELLEN AUF 
EINEM TRANSLATORISCH UND ROTIEREND BEWEGTEN ZYLINDER 

Zusammenfassung-Diese Abhandlung stellt eine Analyse der Wlrmeleitung in einem translator&h und 
rotierend bewegten Zylinder unter dem EinfluD eines Systems von diskreten und verteilten Warmequellen 
uber die Zylinderoberflbhe dar. Stationare und instationlre Zustiinde sowie Ubergangsphasen werden 
behandelt. Physikalisch stellt das Problem die Bearbeitung eines Zylinders mit einem Werkzeugsatz dar. 
Zwei einfachere Fllle wurden ebenfalls untersucht: ein System von bewegten Ringquellen und eine 

bewegte Linienquelle. 
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CIJCTEMA KOHLJEHTPkiPOBAHHbIX W PACl-lPEfiEJlEHHbIX TEl-UIOBbIX 
HCTOYHMKOB HA qkiJIkiItqPE, HAXOjZ(IIuEMCJI B l-lOCTYllATEJIbHOM I4 

BPAUATEJIbHOM )JBM’HCEHMM 

hlEOTflI@lSl-- ~penCTaBJIeHaHaJUi3 TellJlOlTpOBO~HOCT~B UWUiHilpe,HaXOjWIIeMC5l Bl-lOCTynaTeJlb- 

HOM H BpalQaTenbHOM ABHX(eHkfH,IIpH HaJUiYWW CHCTeMbI KOHUeHTpHpOBaHHbIX H paClTpejleJleHHblX 

HCTOWUKOB Ha nosepxHocTki uunawpa. PaccMarpwaawTcx cTaueoHaprioe, rrepexonHoe H HecTa- 
uuoHapHoe COCTOIIHUII. @H3nrIecKU 3Ta npo6neiua WMeeT MecTO npki o6pa6oTKe unnwnpa Ha6OpoM 

HHCTpyMeHTOB.klCCJIeLIyEOTCR ,IIBa lTpOCTbIX CJly'iaSl:CWTeMaLlBWKylU~XCR KOJlbUeBblX HCTOYHHKOB 

U UCTOYHWKOB,nBlimy4~XCs II0 o6pa3y~qe~nOeepXHOCT~. 


